Compare commits
11 Commits
rearchitec
...
main
| Author | SHA1 | Date |
|---|---|---|
|
|
ceb6019a1c | |
|
|
353b7d7fdc | |
|
|
82c0283b25 | |
|
|
3261b6c97a | |
|
|
f3f6a58a65 | |
|
|
0b91a71575 | |
|
|
144ae8de6c | |
|
|
dee5b4afd4 | |
|
|
e6883fbc65 | |
|
|
072d2ccdb5 | |
|
|
9f4a67770f |
|
|
@ -2,4 +2,6 @@
|
|||
.vscode
|
||||
*.tmp.*
|
||||
node_modules
|
||||
cardiograph.code-workspace
|
||||
cardiograph.code-workspace
|
||||
*venv*
|
||||
*__pycache__
|
||||
|
|
|
|||
|
|
@ -1,3 +1,6 @@
|
|||
[submodule "src/argparser"]
|
||||
path = src/opter
|
||||
url = https://git.nloewen.com/n/argv-parser.git
|
||||
[submodule "src/python/opter-py"]
|
||||
path = src/python/opter-py
|
||||
url = https://git.nloewen.com/n/opter-py.git
|
||||
|
|
|
|||
|
|
@ -8,6 +8,15 @@ Cardiograph is an imaginary computer. It has three main components:
|
|||
|
||||
## Simulator
|
||||
|
||||
### Dependencies
|
||||
Cardiograph is an imaginary computer. It has three main components:
|
||||
|
||||
1. the CPU, *Card* (short for 'Completely Analogue Risc Machine')
|
||||
2. an input-output processor, *IO*
|
||||
3. a display, *Graph*
|
||||
|
||||
## Simulator
|
||||
|
||||
### Dependencies
|
||||
|
||||
- Node.js
|
||||
|
|
@ -0,0 +1,20 @@
|
|||
import board
|
||||
import displayio
|
||||
import vectorio
|
||||
import terminalio
|
||||
from adafruit_display_text import label
|
||||
|
||||
group = displayio.Group()
|
||||
board.DISPLAY.root_group = group
|
||||
|
||||
text = "Hello world"
|
||||
text_area = label.Label(terminalio.FONT, text=text)
|
||||
text_area.x = 10
|
||||
text_area.y = 10
|
||||
group.append(text_area)
|
||||
|
||||
palette = displayio.Palette(1)
|
||||
palette[0] = 0xff00ff
|
||||
|
||||
circle = vectorio.Circle(pixel_shader=palette, radius=5, x=5, y=5)
|
||||
group.append(circle)
|
||||
|
|
@ -0,0 +1,13 @@
|
|||
#meowbit
|
||||
|
||||
import keypad
|
||||
import board
|
||||
|
||||
km = keypad.KeyMatrix(
|
||||
row_pins = (board.P0, board.P1, board.P2, board.P3),
|
||||
column_pins = (board.P4, board.P6, board.P8, board.P9) )
|
||||
|
||||
while True:
|
||||
event = km.events.get()
|
||||
if event:
|
||||
print(event.key_number, event.released)
|
||||
|
|
@ -0,0 +1,12 @@
|
|||
import time
|
||||
import board
|
||||
import neopixel
|
||||
|
||||
pixels = neopixel.NeoPixel(board.A3, 5*5, brightness=0.5, auto_write=True)
|
||||
|
||||
for i in range(50):
|
||||
pixels.fill((50, 0, 0)) # red
|
||||
time.sleep(0.5)
|
||||
pixels.fill((0,0,50)) # blue
|
||||
time.sleep(0.5)
|
||||
print(i)
|
||||
Binary file not shown.
|
|
@ -0,0 +1,181 @@
|
|||
# SPDX-FileCopyrightText: 2016 Damien P. George
|
||||
# SPDX-FileCopyrightText: 2017 Scott Shawcroft for Adafruit Industries
|
||||
# SPDX-FileCopyrightText: 2019 Carter Nelson
|
||||
# SPDX-FileCopyrightText: 2019 Roy Hooper
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
"""
|
||||
`neopixel` - NeoPixel strip driver
|
||||
====================================================
|
||||
|
||||
* Author(s): Damien P. George, Scott Shawcroft, Carter Nelson, Rose Hooper
|
||||
"""
|
||||
|
||||
import sys
|
||||
import board
|
||||
import digitalio
|
||||
from neopixel_write import neopixel_write
|
||||
|
||||
import adafruit_pixelbuf
|
||||
|
||||
try:
|
||||
# Used only for typing
|
||||
from typing import Optional, Type
|
||||
from types import TracebackType
|
||||
import microcontroller
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
__version__ = "6.3.15"
|
||||
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel.git"
|
||||
|
||||
|
||||
# Pixel color order constants
|
||||
RGB = "RGB"
|
||||
"""Red Green Blue"""
|
||||
GRB = "GRB"
|
||||
"""Green Red Blue"""
|
||||
RGBW = "RGBW"
|
||||
"""Red Green Blue White"""
|
||||
GRBW = "GRBW"
|
||||
"""Green Red Blue White"""
|
||||
|
||||
|
||||
class NeoPixel(adafruit_pixelbuf.PixelBuf):
|
||||
"""
|
||||
A sequence of neopixels.
|
||||
|
||||
:param ~microcontroller.Pin pin: The pin to output neopixel data on.
|
||||
:param int n: The number of neopixels in the chain
|
||||
:param int bpp: Bytes per pixel. 3 for RGB and 4 for RGBW pixels.
|
||||
:param float brightness: Brightness of the pixels between 0.0 and 1.0 where 1.0 is full
|
||||
brightness
|
||||
:param bool auto_write: True if the neopixels should immediately change when set. If False,
|
||||
`show` must be called explicitly.
|
||||
:param str pixel_order: Set the pixel color channel order. The default is GRB if bpp is set
|
||||
to 3, otherwise GRBW is used as the default.
|
||||
|
||||
Example for Circuit Playground Express:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import neopixel
|
||||
from board import *
|
||||
|
||||
RED = 0x100000 # (0x10, 0, 0) also works
|
||||
|
||||
pixels = neopixel.NeoPixel(NEOPIXEL, 10)
|
||||
for i in range(len(pixels)):
|
||||
pixels[i] = RED
|
||||
|
||||
Example for Circuit Playground Express setting every other pixel red using a slice:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import neopixel
|
||||
from board import *
|
||||
import time
|
||||
|
||||
RED = 0x100000 # (0x10, 0, 0) also works
|
||||
|
||||
# Using ``with`` ensures pixels are cleared after we're done.
|
||||
with neopixel.NeoPixel(NEOPIXEL, 10) as pixels:
|
||||
pixels[::2] = [RED] * (len(pixels) // 2)
|
||||
time.sleep(2)
|
||||
|
||||
.. py:method:: NeoPixel.show()
|
||||
|
||||
Shows the new colors on the pixels themselves if they haven't already
|
||||
been autowritten.
|
||||
|
||||
The colors may or may not be showing after this function returns because
|
||||
it may be done asynchronously.
|
||||
|
||||
.. py:method:: NeoPixel.fill(color)
|
||||
|
||||
Colors all pixels the given ***color***.
|
||||
|
||||
.. py:attribute:: brightness
|
||||
|
||||
Overall brightness of the pixel (0 to 1.0)
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
pin: microcontroller.Pin,
|
||||
n: int,
|
||||
*,
|
||||
bpp: int = 3,
|
||||
brightness: float = 1.0,
|
||||
auto_write: bool = True,
|
||||
pixel_order: str = None
|
||||
):
|
||||
if not pixel_order:
|
||||
pixel_order = GRB if bpp == 3 else GRBW
|
||||
elif isinstance(pixel_order, tuple):
|
||||
order_list = [RGBW[order] for order in pixel_order]
|
||||
pixel_order = "".join(order_list)
|
||||
|
||||
self._power = None
|
||||
if (
|
||||
sys.implementation.version[0] >= 7
|
||||
and getattr(board, "NEOPIXEL", None) == pin
|
||||
):
|
||||
power = getattr(board, "NEOPIXEL_POWER_INVERTED", None)
|
||||
polarity = power is None
|
||||
if not power:
|
||||
power = getattr(board, "NEOPIXEL_POWER", None)
|
||||
if power:
|
||||
try:
|
||||
self._power = digitalio.DigitalInOut(power)
|
||||
self._power.switch_to_output(value=polarity)
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
super().__init__(
|
||||
n, brightness=brightness, byteorder=pixel_order, auto_write=auto_write
|
||||
)
|
||||
|
||||
self.pin = digitalio.DigitalInOut(pin)
|
||||
self.pin.direction = digitalio.Direction.OUTPUT
|
||||
|
||||
def deinit(self) -> None:
|
||||
"""Blank out the NeoPixels and release the pin."""
|
||||
self.fill(0)
|
||||
self.show()
|
||||
self.pin.deinit()
|
||||
if self._power:
|
||||
self._power.deinit()
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(
|
||||
self,
|
||||
exception_type: Optional[Type[BaseException]],
|
||||
exception_value: Optional[BaseException],
|
||||
traceback: Optional[TracebackType],
|
||||
):
|
||||
self.deinit()
|
||||
|
||||
def __repr__(self):
|
||||
return "[" + ", ".join([str(x) for x in self]) + "]"
|
||||
|
||||
@property
|
||||
def n(self) -> int:
|
||||
"""
|
||||
The number of neopixels in the chain (read-only)
|
||||
"""
|
||||
return len(self)
|
||||
|
||||
def write(self) -> None:
|
||||
""".. deprecated: 1.0.0
|
||||
|
||||
Use ``show`` instead. It matches Micro:Bit and Arduino APIs."""
|
||||
self.show()
|
||||
|
||||
def _transmit(self, buffer: bytearray) -> None:
|
||||
neopixel_write(self.pin, buffer)
|
||||
|
|
@ -0,0 +1,20 @@
|
|||
# Open the binary file in read-binary mode
|
||||
with open('test-multiply.bin', 'rb') as file:
|
||||
# Read the entire file contents
|
||||
binary_data = file.read()
|
||||
|
||||
# Convert the binary data to a string of hex bytes
|
||||
hex_string = binary_data.hex()
|
||||
|
||||
# Print the hex string
|
||||
print(hex_string)
|
||||
|
||||
|
||||
# Open the binary file in read-binary mode
|
||||
with open('test-multiply.bin', 'rb') as file:
|
||||
# Read the entire file contents into a bytearray
|
||||
byte_data = bytearray(file.read())
|
||||
|
||||
# Print the bytearray
|
||||
print(byte_data)
|
||||
|
||||
Binary file not shown.
|
|
@ -0,0 +1,10 @@
|
|||
import board
|
||||
import busio
|
||||
from adafruit_ht16k33 import matrix
|
||||
i2c = busio.I2C(board.GP17, board.GP16) # scl, sda
|
||||
|
||||
matrix = matrix.Matrix8x8(i2c)
|
||||
matrix.fill(0) # Clear the matrix.
|
||||
matrix[0, 0] = 1
|
||||
matrix.brightness = 1
|
||||
matrix.blink_rate = 2
|
||||
|
|
@ -0,0 +1,14 @@
|
|||
"""Example for pi pico. Blinking LED"""
|
||||
|
||||
import board
|
||||
import digitalio
|
||||
import time
|
||||
|
||||
led = digitalio.DigitalInOut(board.LED)
|
||||
led.direction = digitalio.Direction.OUTPUT
|
||||
|
||||
led.value = True
|
||||
|
||||
for i in range(50):
|
||||
led.value = not led.value
|
||||
time.sleep(0.5)
|
||||
|
|
@ -0,0 +1,17 @@
|
|||
"""Example for pi pico. Button-controlled LED.
|
||||
|
||||
Wiring: switch to ground pin on pico, and to pin 18.
|
||||
"""
|
||||
|
||||
import board
|
||||
import digitalio
|
||||
|
||||
led = digitalio.DigitalInOut(board.LED)
|
||||
led.direction = digitalio.Direction.OUTPUT
|
||||
|
||||
switch = digitalio.DigitalInOut(board.GP18)
|
||||
switch.direction = digitalio.Direction.INPUT
|
||||
switch.pull = digitalio.Pull.UP
|
||||
|
||||
while True:
|
||||
led.value = not switch.value
|
||||
|
|
@ -0,0 +1,19 @@
|
|||
# pi pico
|
||||
|
||||
import keypad
|
||||
import board
|
||||
|
||||
keymatrix = keypad.KeyMatrix(
|
||||
row_pins = (board.GP5, board.GP6, board.GP7, board.GP8),
|
||||
column_pins = (board.GP9, board.GP10, board.GP11, board.GP12, board.GP13) )
|
||||
|
||||
keymap = {
|
||||
15:"0", 16:"1", 17:"2", 18:"3", 19:"runhalt",
|
||||
10:"4", 11:"5", 12:"6", 13:"7", 14:"step",
|
||||
5:"8", 6:"9", 7:"A", 8:"B", 9:"addrdata",
|
||||
0:"C", 1:"D", 2:"E", 3:"F", 4:"NA" }
|
||||
|
||||
while True:
|
||||
event = keymatrix.events.get()
|
||||
if event:
|
||||
print(event.key_number, event.released, keymap[event.key_number])
|
||||
|
|
@ -0,0 +1,19 @@
|
|||
import board
|
||||
import keypad
|
||||
|
||||
keymatrix = keypad.KeyMatrix(
|
||||
row_pins = (board.GP5, board.GP6, board.GP7, board.GP8),
|
||||
column_pins = (board.GP9, board.GP10, board.GP11, board.GP12, board.GP13) )
|
||||
|
||||
keymap = {
|
||||
15:"0", 16:"1", 17:"2", 18:"3", 19:"runhalt",
|
||||
10:"4", 11:"5", 12:"6", 13:"7", 14:"step",
|
||||
5:"8", 6:"9", 7:"A", 8:"B", 9:"addr",
|
||||
0:"C", 1:"D", 2:"E", 3:"F", 4:"data" }
|
||||
|
||||
while True:
|
||||
keypad_event = keymatrix.events.get()
|
||||
keyPressed = True if (keypad_event and keypad_event.released ) else False
|
||||
key = keymap[keypad_event.key_number] if keyPressed else False
|
||||
if key:
|
||||
print(key)
|
||||
|
|
@ -0,0 +1,14 @@
|
|||
"""Example for pi pico. Blinking LED"""
|
||||
|
||||
import board
|
||||
import digitalio
|
||||
import time
|
||||
from tm1637_display import TM1637Display
|
||||
|
||||
display_1 = TM1637Display(board.GP0, board.GP1, length=4)
|
||||
display_1.print("1234")
|
||||
|
||||
display_2 = TM1637Display(board.GP2, board.GP3, length=4)
|
||||
display_2.print("ABCD")
|
||||
|
||||
print("end")
|
||||
|
|
@ -0,0 +1,31 @@
|
|||
BSD 3-Clause License
|
||||
|
||||
Copyright (c) 2013-2024, Kim Davies and contributors.
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
3. Neither the name of the copyright holder nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
||||
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
|
@ -0,0 +1,164 @@
|
|||
import time
|
||||
|
||||
class CPU:
|
||||
def __init__(self):
|
||||
self.running = False
|
||||
self.IP = 254
|
||||
self.acc = 0
|
||||
self.flags = { 'C': False, 'Z': False, 'N': False, 'Eq': False }
|
||||
self.instruction = { 'opcode': False, 'operand': False }
|
||||
self.memory = False
|
||||
|
||||
|
||||
def load_memory(self, bytes):
|
||||
self.memory = bytes + bytearray(256 - len(bytes))
|
||||
# print(self.memory)
|
||||
|
||||
def start(self):
|
||||
self.running = True
|
||||
|
||||
def step(self):
|
||||
if self.IP >= 255: # TODO CHECK
|
||||
self.IP = 0
|
||||
print("IP:", toHex(self.IP))
|
||||
self.instruction['opcode'] = self.memory[self.IP]
|
||||
self.IP = self.IP+1
|
||||
self.instruction['operand'] = self.memory[self.IP]
|
||||
self.IP = self.IP+1
|
||||
self.nums2mnems[self.instruction['opcode']](self, self.instruction['operand'])
|
||||
|
||||
print("instr:", toHex(self.instruction['opcode']), toHex(self.instruction['operand']))
|
||||
print("mnem:", self.nums2mnems[self.instruction['opcode']])
|
||||
print("acc:", self.acc, "N:", self.flags['N'])
|
||||
print("running:", self.running)
|
||||
print()
|
||||
# self.print_screen()
|
||||
print("byte 26 (keyboard):", self.memory[26])
|
||||
print()
|
||||
|
||||
def hlt(self, operand):
|
||||
self.running = False
|
||||
|
||||
def nop(self, operand):
|
||||
pass
|
||||
|
||||
def lda_lit(self, operand):
|
||||
self.acc = operand
|
||||
self.flags['Z'] = True if self.acc == 0 else False
|
||||
self.flags['Eq'] = True if self.acc == operand else False
|
||||
self.flags['N'] = True if self.acc > 127 else False
|
||||
|
||||
def lda_mem(self, operand):
|
||||
self.acc = self.memory[operand]
|
||||
self.flags['Z'] = True if self.acc == 0 else False
|
||||
self.flags['Eq'] = True if self.acc == operand else False
|
||||
self.flags['N'] = True if self.acc > 127 else False
|
||||
|
||||
def sta_lit(self, operand):
|
||||
self.memory[operand] = self.acc
|
||||
|
||||
def sta_mem(self, operand):
|
||||
self.memory[self.memory[operand]] = self.acc
|
||||
|
||||
def add_lit(self, operand):
|
||||
self.acc = self.acc + operand
|
||||
if self.acc > 255:
|
||||
self.acc = self.acc % 256
|
||||
self.flags['C'] = True
|
||||
else:
|
||||
self.flags['C'] = False
|
||||
self.flags['Z'] = True if self.acc == 0 else False
|
||||
self.flags['Eq'] = True if self.acc == operand else False
|
||||
self.flags['N'] = True if self.acc > 127 else False
|
||||
|
||||
def add_mem(self, operand):
|
||||
self.acc = self.acc + self.memory[operand]
|
||||
if self.acc > 255:
|
||||
self.acc = self.acc % 256
|
||||
self.flags['C'] = True
|
||||
else:
|
||||
self.flags['C'] = False
|
||||
self.flags['Z'] = True if self.acc == 0 else False
|
||||
self.flags['Eq'] = True if self.acc == operand else False
|
||||
self.flags['N'] = True if self.acc > 127 else False
|
||||
|
||||
def sub_lit(self, operand):
|
||||
self.acc = self.acc - operand
|
||||
if self.acc < 0:
|
||||
self.acc = self.acc % 256
|
||||
self.flags['C'] = True
|
||||
else:
|
||||
self.flags['C'] = False
|
||||
self.flags['Z'] = True if self.acc == 0 else False
|
||||
self.flags['Eq'] = True if self.acc == operand else False
|
||||
self.flags['N'] = True if self.acc > 127 else False
|
||||
|
||||
def sub_mem(self, operand):
|
||||
self.acc = self.acc - self.memory[operand]
|
||||
if self.acc > 255:
|
||||
self.acc = self.acc % 256
|
||||
self.flags['C'] = True
|
||||
else:
|
||||
self.flags['C'] = False
|
||||
self.flags['Z'] = True if self.acc == 0 else False
|
||||
self.flags['Eq'] = True if self.acc == operand else False
|
||||
self.flags['N'] = True if self.acc > 127 else False
|
||||
|
||||
def jmp_lit(self, operand):
|
||||
self.IP = operand
|
||||
|
||||
def jmp_mem(self, operand):
|
||||
self.IP = self.memory[operand]
|
||||
|
||||
def ske(self, operand): # FIXME
|
||||
# if self.flags['Eq']:
|
||||
# self.IP += 2
|
||||
if self.acc == operand:
|
||||
self.IP += 2
|
||||
|
||||
def skz(self, operand):
|
||||
if self.flags['Z']:
|
||||
self.IP += 2
|
||||
|
||||
def skn(self, operand):
|
||||
if self.flags['N']:
|
||||
self.IP += 2
|
||||
|
||||
def skc(self, operand):
|
||||
if self.flags['C']:
|
||||
self.IP += 2
|
||||
|
||||
def cst(self, operand):
|
||||
self.flags['C'] = True
|
||||
|
||||
def ccl(self, operand):
|
||||
self.flags['C'] = False
|
||||
|
||||
nums2mnems = {
|
||||
0: hlt, # x0
|
||||
1: nop, # x1
|
||||
2: lda_lit, # 02
|
||||
3: sta_lit, # 03
|
||||
4: add_lit, # 04
|
||||
5: sub_lit, # 05
|
||||
6: jmp_lit, # 06
|
||||
7: ske, # x7
|
||||
8: skz, # x8
|
||||
9: skn, # x9
|
||||
10: skc, # A
|
||||
11: cst, # B
|
||||
12: ccl, # C
|
||||
16: hlt, #
|
||||
17: nop, #
|
||||
18: lda_mem, # 12
|
||||
19: sta_mem, # 13
|
||||
20: add_mem, # 14
|
||||
21: sub_mem, # 15
|
||||
22: jmp_mem, # 16
|
||||
23: ske,
|
||||
24: skz,
|
||||
25: skn,
|
||||
26: skc,
|
||||
27: cst,
|
||||
28: ccl,
|
||||
}
|
||||
|
|
@ -0,0 +1,124 @@
|
|||
numericKeys = [ "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F" ]
|
||||
|
||||
def toHex(n):
|
||||
return "%0.2X" % n
|
||||
|
||||
class Monitor:
|
||||
def __init__(self, cpu):
|
||||
self.cpu = cpu
|
||||
self.monitorMode = 'addressEntry' # or dataEntry
|
||||
self.monitorAddressInput = TwoDigitHexInput()
|
||||
self.monitorDataInput = TwoDigitHexInput()
|
||||
|
||||
# In data entry mode, when a full byte is keyed in,
|
||||
# the next keypress advances to the next address and continues entering data there.
|
||||
# This variable tracks whether it's time to do that or not.
|
||||
self.advanceDataEntryNextPress = False
|
||||
|
||||
def handleKeys(self):
|
||||
keypad_event = keymatrix.events.get()
|
||||
keyPressed = True if (keypad_event and keypad_event.released ) else False
|
||||
key = keymap[keypad_event.key_number] if keyPressed else False
|
||||
numericKeyPressed = True if (keyPressed and (key in numericKeys)) else False
|
||||
|
||||
|
||||
if self.cpu.running:
|
||||
if key == "runhalt":
|
||||
print("HALT PRESSED")
|
||||
self.cpu.running = False
|
||||
time.sleep(0.5) # lazy debounce
|
||||
# km.events.clear() # don't track keypresses from during the run
|
||||
|
||||
if numericKeyPressed:
|
||||
self.cpu.memory[26] = int(key, 16)
|
||||
|
||||
elif not self.cpu.running:
|
||||
if key == "runhalt":
|
||||
self.cpu.running = True
|
||||
print("\nSTARTING")
|
||||
time.sleep(0.5) # lazy debounce
|
||||
|
||||
if key == "addr":
|
||||
self.monitorMode = 'addressEntry'
|
||||
print("\nENTERING", self.monitorMode, "MODE")
|
||||
self.monitorAddressInput.currentDigit = 0
|
||||
time.sleep(0.5) # lazy debounce
|
||||
if key == "data":
|
||||
self.monitorMode = 'dataEntry'
|
||||
print("\nENTERING", self.monitorMode, "MODE")
|
||||
self.monitorDataInput.clear()
|
||||
self.advanceDataEntryNextPress = False
|
||||
time.sleep(0.5) # lazy debounce
|
||||
|
||||
if key == "step":
|
||||
print("\nSINGLE STEP FROM MONITOR ADDR")
|
||||
# self.IP = self.monitorAddressInput.value
|
||||
self.cpu.step()
|
||||
time.sleep(0.5) # lazy debounce
|
||||
|
||||
if numericKeyPressed:
|
||||
if self.monitorMode == 'addressEntry':
|
||||
self.monitorAddressInput.input(int(key, 16))
|
||||
self.cpu.IP = self.monitorAddressInput.value
|
||||
print("MA", self.cpu.IP)
|
||||
|
||||
if self.monitorMode == 'dataEntry':
|
||||
if self.advanceDataEntryNextPress:
|
||||
print("ADVANCING")
|
||||
self.cpu.IP = (self.cpu.IP + 1) % 256
|
||||
# self.monitorDataInput.clear() # reset .currentDigit
|
||||
self.monitorDataInput.set(self.cpu.memory[self.cpu.IP])
|
||||
self.advanceDataEntryNextPress = False
|
||||
self.monitorDataInput.input(int(key, 16))
|
||||
self.cpu.memory[self.cpu.IP] = self.monitorDataInput.value
|
||||
print("MD", self.monitorDataInput.value)
|
||||
if self.monitorDataInput.currentDigit == 0: # that was the second keypress, so next keypress is for the next address
|
||||
self.advanceDataEntryNextPress = True
|
||||
|
||||
print("Acc", self.cpu.acc, "IP", self.cpu.IP, "Data", self.cpu.memory[self.cpu.IP], "\n")
|
||||
|
||||
|
||||
def displayScreen(self):
|
||||
for x in range(8):
|
||||
for y in range(8):
|
||||
matrix[x, y] = self.cpu.memory[x + (8*y)]
|
||||
|
||||
|
||||
|
||||
def run(self):
|
||||
#self.cpu.start()
|
||||
t = time.time()
|
||||
while (time.time() - t) < 120: # TODO: add a time delta or sth maybe so this doesn't just burn cycles
|
||||
self.handleKeys()
|
||||
display_1.print(toHex(self.cpu.IP) + toHex(self.cpu.memory[self.cpu.IP]))
|
||||
# display_1.print(toHex(self.monitorAddressInput.value) + toHex(self.cpu.memory[self.cpu.IP]))
|
||||
# display_2.print(toHex(self.cpu.IP) + toHex(self.cpu.acc))
|
||||
display_2.print(toHex(self.cpu.acc))
|
||||
self.displayScreen()
|
||||
if self.cpu.running:
|
||||
self.cpu.step()
|
||||
# time.sleep(0.5) # TODO ?
|
||||
print("timeout")
|
||||
print(self.cpu.memory)
|
||||
|
||||
|
||||
cpu = CPU()
|
||||
monitor = Monitor(cpu)
|
||||
|
||||
# preamble = '00 ' * 64
|
||||
# prog = preamble + '02 01 13 f0 12 f0 04 02 03 f0 12 f0 05 41 08 00 06 40 00 00' # STRIPES
|
||||
# offset = 64
|
||||
# prog = preamble + '02 01 13 f0 12 f0 04 02 03 f0 05 08 09 00 04 09 03 f0 07 41 06' + toHex(offset) + '00 00'
|
||||
#prog = '00'
|
||||
# program_bytes = bytearray.fromhex(prog.replace(" ", ""))
|
||||
|
||||
# Add jmp at addr 254:
|
||||
#program_with_jump = program_bytes + bytearray(254 - len(program_bytes)) + bytearray.fromhex('0600') # jump to addr 00
|
||||
# program_with_jump = program_bytes + bytearray(254 - len(program_bytes)) + bytearray.fromhex('0640') # jump to addr 0x40 (dec 64)
|
||||
|
||||
with open('test-multiply2.bin', 'rb') as file:
|
||||
program_bytes = bytearray(file.read())
|
||||
|
||||
cpu.load_memory(program_bytes)
|
||||
|
||||
monitor.run()
|
||||
|
|
@ -0,0 +1,5 @@
|
|||
import cpu
|
||||
|
||||
c = cpu.CPU()
|
||||
|
||||
print(c)
|
||||
|
|
@ -1 +0,0 @@
|
|||
Subproject commit 1d98a0707c3e61e362d2d3d5413b475437b5de0e
|
||||
Loading…
Reference in New Issue