353 lines
12 KiB
Python
353 lines
12 KiB
Python
# TO USE KEYPAD TO MANIPULATE DATA:
|
|
#
|
|
# A button: run/halt
|
|
# B button: when halted, toggles address/data entry
|
|
# Right button: when halted, single-steps
|
|
#
|
|
# Address entry: press the two digits for the address. It is entered immediately (there's no "enter" key)
|
|
# Data entry: likewise. After you press the second digit, it will automatically go to the next address.
|
|
|
|
|
|
import time
|
|
import board
|
|
import keypad
|
|
import digitalio
|
|
from tm1637_display import TM1637Display
|
|
import board
|
|
import busio # for led matrix
|
|
from adafruit_ht16k33 import matrix
|
|
|
|
class TwoDigitHexInput:
|
|
def __init__(self):
|
|
self.digits = [0x0, 0x0]
|
|
self.currentDigit = 0
|
|
self.value = 0
|
|
|
|
def input(self, d):
|
|
self.digits[self.currentDigit] = d
|
|
self.value = (self.digits[0] * 16) + self.digits[1]
|
|
print("INPUT", self.digits, "current digit: " + str(self.currentDigit), "value: " + str(self.value))
|
|
self.currentDigit = 0 if self.currentDigit else 1
|
|
|
|
def clear(self):
|
|
self.__init__()
|
|
print(self.digits)
|
|
|
|
def set(self, n):
|
|
self.value = n
|
|
self.digits[0] = n >> 4
|
|
self.digits[1] = n & 0xF
|
|
|
|
|
|
|
|
|
|
class CPU:
|
|
def __init__(self):
|
|
self.running = False
|
|
self.IP = 254
|
|
self.acc = 0
|
|
self.flags = { 'C': False, 'Z': False, 'N': False, 'Eq': False }
|
|
self.instruction = { 'opcode': False, 'operand': False }
|
|
self.memory = False
|
|
|
|
|
|
def load_memory(self, bytes):
|
|
self.memory = bytes + bytearray(256 - len(bytes))
|
|
# print(self.memory)
|
|
|
|
def start(self):
|
|
self.running = True
|
|
|
|
def step(self):
|
|
if self.IP >= 255: # TODO CHECK
|
|
self.IP = 0
|
|
print("IP:", toHex(self.IP))
|
|
self.instruction['opcode'] = self.memory[self.IP]
|
|
self.IP = self.IP+1
|
|
self.instruction['operand'] = self.memory[self.IP]
|
|
self.IP = self.IP+1
|
|
self.nums2mnems[self.instruction['opcode']](self, self.instruction['operand'])
|
|
|
|
print("instr:", toHex(self.instruction['opcode']), toHex(self.instruction['operand']))
|
|
print("mnem:", self.nums2mnems[self.instruction['opcode']])
|
|
print("acc:", self.acc, "N:", self.flags['N'])
|
|
print("running:", self.running)
|
|
print()
|
|
# self.print_screen()
|
|
print("byte 26 (keyboard):", self.memory[26])
|
|
print()
|
|
|
|
def hlt(self, operand):
|
|
self.running = False
|
|
|
|
def nop(self, operand):
|
|
pass
|
|
|
|
def lda_lit(self, operand):
|
|
self.acc = operand
|
|
self.flags['Z'] = True if self.acc == 0 else False
|
|
self.flags['Eq'] = True if self.acc == operand else False
|
|
self.flags['N'] = True if self.acc > 127 else False
|
|
|
|
def lda_mem(self, operand):
|
|
self.acc = self.memory[operand]
|
|
self.flags['Z'] = True if self.acc == 0 else False
|
|
self.flags['Eq'] = True if self.acc == operand else False
|
|
self.flags['N'] = True if self.acc > 127 else False
|
|
|
|
def sta_lit(self, operand):
|
|
self.memory[operand] = self.acc
|
|
|
|
def sta_mem(self, operand):
|
|
self.memory[self.memory[operand]] = self.acc
|
|
|
|
def add_lit(self, operand):
|
|
self.acc = self.acc + operand
|
|
if self.acc > 255:
|
|
self.acc = self.acc % 256
|
|
self.flags['C'] = True
|
|
else:
|
|
self.flags['C'] = False
|
|
self.flags['Z'] = True if self.acc == 0 else False
|
|
self.flags['Eq'] = True if self.acc == operand else False
|
|
self.flags['N'] = True if self.acc > 127 else False
|
|
|
|
def add_mem(self, operand):
|
|
self.acc = self.acc + self.memory[operand]
|
|
if self.acc > 255:
|
|
self.acc = self.acc % 256
|
|
self.flags['C'] = True
|
|
else:
|
|
self.flags['C'] = False
|
|
self.flags['Z'] = True if self.acc == 0 else False
|
|
self.flags['Eq'] = True if self.acc == operand else False
|
|
self.flags['N'] = True if self.acc > 127 else False
|
|
|
|
def sub_lit(self, operand):
|
|
self.acc = self.acc - operand
|
|
if self.acc < 0:
|
|
self.acc = self.acc % 256
|
|
self.flags['C'] = True
|
|
else:
|
|
self.flags['C'] = False
|
|
self.flags['Z'] = True if self.acc == 0 else False
|
|
self.flags['Eq'] = True if self.acc == operand else False
|
|
self.flags['N'] = True if self.acc > 127 else False
|
|
|
|
def sub_mem(self, operand):
|
|
self.acc = self.acc - self.memory[operand]
|
|
if self.acc > 255:
|
|
self.acc = self.acc % 256
|
|
self.flags['C'] = True
|
|
else:
|
|
self.flags['C'] = False
|
|
self.flags['Z'] = True if self.acc == 0 else False
|
|
self.flags['Eq'] = True if self.acc == operand else False
|
|
self.flags['N'] = True if self.acc > 127 else False
|
|
|
|
def jmp_lit(self, operand):
|
|
self.IP = operand
|
|
|
|
def jmp_mem(self, operand):
|
|
self.IP = self.memory[operand]
|
|
|
|
def ske(self, operand): # FIXME
|
|
# if self.flags['Eq']:
|
|
# self.IP += 2
|
|
if self.acc == operand:
|
|
self.IP += 2
|
|
|
|
def skz(self, operand):
|
|
if self.flags['Z']:
|
|
self.IP += 2
|
|
|
|
def skn(self, operand):
|
|
if self.flags['N']:
|
|
self.IP += 2
|
|
|
|
def skc(self, operand):
|
|
if self.flags['C']:
|
|
self.IP += 2
|
|
|
|
def cst(self, operand):
|
|
self.flags['C'] = True
|
|
|
|
def ccl(self, operand):
|
|
self.flags['C'] = False
|
|
|
|
nums2mnems = {
|
|
0: hlt, # x0
|
|
1: nop, # x1
|
|
2: lda_lit, # 02
|
|
3: sta_lit, # 03
|
|
4: add_lit, # 04
|
|
5: sub_lit, # 05
|
|
6: jmp_lit, # 06
|
|
7: ske, # x7
|
|
8: skz, # x8
|
|
9: skn, # x9
|
|
10: skc, # A
|
|
11: cst, # B
|
|
12: ccl, # C
|
|
16: hlt, #
|
|
17: nop, #
|
|
18: lda_mem, # 12
|
|
19: sta_mem, # 13
|
|
20: add_mem, # 14
|
|
21: sub_mem, # 15
|
|
22: jmp_mem, # 16
|
|
23: ske,
|
|
24: skz,
|
|
25: skn,
|
|
26: skc,
|
|
27: cst,
|
|
28: ccl,
|
|
}
|
|
|
|
|
|
### PI PICO SPECIFIC STUFF ###
|
|
|
|
# to list board features: print(dir(board))
|
|
|
|
display_1 = TM1637Display(board.GP0, board.GP1, length=4)
|
|
display_2 = TM1637Display(board.GP2, board.GP3, length=4)
|
|
|
|
i2c = busio.I2C(board.GP17, board.GP16) # scl, sda
|
|
matrix = matrix.Matrix8x8(i2c)
|
|
matrix.brightness = 1
|
|
matrix.blink_rate = 0
|
|
|
|
keymatrix = keypad.KeyMatrix(
|
|
row_pins = (board.GP5, board.GP6, board.GP7, board.GP8),
|
|
column_pins = (board.GP9, board.GP10, board.GP11, board.GP12, board.GP13) )
|
|
|
|
keymap = {
|
|
15:"0", 16:"1", 17:"2", 18:"3", 19:"runhalt",
|
|
10:"4", 11:"5", 12:"6", 13:"7", 14:"step",
|
|
5:"8", 6:"9", 7:"A", 8:"B", 9:"addr",
|
|
0:"C", 1:"D", 2:"E", 3:"F", 4:"data" }
|
|
|
|
numericKeys = [ "0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F" ]
|
|
|
|
def toHex(n):
|
|
return "%0.2X" % n
|
|
|
|
class Monitor:
|
|
def __init__(self, cpu):
|
|
self.cpu = cpu
|
|
self.monitorMode = 'addressEntry' # or dataEntry
|
|
self.monitorAddressInput = TwoDigitHexInput()
|
|
self.monitorDataInput = TwoDigitHexInput()
|
|
|
|
# In data entry mode, when a full byte is keyed in,
|
|
# the next keypress advances to the next address and continues entering data there.
|
|
# This variable tracks whether it's time to do that or not.
|
|
self.advanceDataEntryNextPress = False
|
|
|
|
def handleKeys(self):
|
|
keypad_event = keymatrix.events.get()
|
|
keyPressed = True if (keypad_event and keypad_event.released ) else False
|
|
key = keymap[keypad_event.key_number] if keyPressed else False
|
|
numericKeyPressed = True if (keyPressed and (key in numericKeys)) else False
|
|
|
|
|
|
if self.cpu.running:
|
|
if key == "runhalt":
|
|
print("HALT PRESSED")
|
|
self.cpu.running = False
|
|
time.sleep(0.5) # lazy debounce
|
|
# km.events.clear() # don't track keypresses from during the run
|
|
|
|
if numericKeyPressed:
|
|
self.cpu.memory[26] = int(key, 16)
|
|
|
|
elif not self.cpu.running:
|
|
if key == "runhalt":
|
|
self.cpu.running = True
|
|
print("\nSTARTING")
|
|
time.sleep(0.5) # lazy debounce
|
|
|
|
if key == "addr":
|
|
self.monitorMode = 'addressEntry'
|
|
print("\nENTERING", self.monitorMode, "MODE")
|
|
self.monitorAddressInput.currentDigit = 0
|
|
time.sleep(0.5) # lazy debounce
|
|
if key == "data":
|
|
self.monitorMode = 'dataEntry'
|
|
print("\nENTERING", self.monitorMode, "MODE")
|
|
self.monitorDataInput.clear()
|
|
self.advanceDataEntryNextPress = False
|
|
time.sleep(0.5) # lazy debounce
|
|
|
|
if key == "step":
|
|
print("\nSINGLE STEP FROM MONITOR ADDR")
|
|
# self.IP = self.monitorAddressInput.value
|
|
self.cpu.step()
|
|
time.sleep(0.5) # lazy debounce
|
|
|
|
if numericKeyPressed:
|
|
if self.monitorMode == 'addressEntry':
|
|
self.monitorAddressInput.input(int(key, 16))
|
|
self.cpu.IP = self.monitorAddressInput.value
|
|
print("MA", self.cpu.IP)
|
|
|
|
if self.monitorMode == 'dataEntry':
|
|
if self.advanceDataEntryNextPress:
|
|
print("ADVANCING")
|
|
self.cpu.IP = (self.cpu.IP + 1) % 256
|
|
# self.monitorDataInput.clear() # reset .currentDigit
|
|
self.monitorDataInput.set(self.cpu.memory[self.cpu.IP])
|
|
self.advanceDataEntryNextPress = False
|
|
self.monitorDataInput.input(int(key, 16))
|
|
self.cpu.memory[self.cpu.IP] = self.monitorDataInput.value
|
|
print("MD", self.monitorDataInput.value)
|
|
if self.monitorDataInput.currentDigit == 0: # that was the second keypress, so next keypress is for the next address
|
|
self.advanceDataEntryNextPress = True
|
|
|
|
print("Acc", self.cpu.acc, "IP", self.cpu.IP, "Data", self.cpu.memory[self.cpu.IP], "\n")
|
|
|
|
|
|
def displayScreen(self):
|
|
for x in range(8):
|
|
for y in range(8):
|
|
matrix[x, y] = self.cpu.memory[x + (8*y)]
|
|
|
|
|
|
|
|
def run(self):
|
|
#self.cpu.start()
|
|
t = time.time()
|
|
while (time.time() - t) < 120: # TODO: add a time delta or sth maybe so this doesn't just burn cycles
|
|
self.handleKeys()
|
|
display_1.print(toHex(self.cpu.IP) + toHex(self.cpu.memory[self.cpu.IP]))
|
|
# display_1.print(toHex(self.monitorAddressInput.value) + toHex(self.cpu.memory[self.cpu.IP]))
|
|
# display_2.print(toHex(self.cpu.IP) + toHex(self.cpu.acc))
|
|
display_2.print(toHex(self.cpu.acc))
|
|
self.displayScreen()
|
|
if self.cpu.running:
|
|
self.cpu.step()
|
|
# time.sleep(0.5) # TODO ?
|
|
print("timeout")
|
|
print(self.cpu.memory)
|
|
|
|
|
|
cpu = CPU()
|
|
monitor = Monitor(cpu)
|
|
|
|
# preamble = '00 ' * 64
|
|
# prog = preamble + '02 01 13 f0 12 f0 04 02 03 f0 12 f0 05 41 08 00 06 40 00 00' # STRIPES
|
|
# offset = 64
|
|
# prog = preamble + '02 01 13 f0 12 f0 04 02 03 f0 05 08 09 00 04 09 03 f0 07 41 06' + toHex(offset) + '00 00'
|
|
#prog = '00'
|
|
# program_bytes = bytearray.fromhex(prog.replace(" ", ""))
|
|
|
|
# Add jmp at addr 254:
|
|
#program_with_jump = program_bytes + bytearray(254 - len(program_bytes)) + bytearray.fromhex('0600') # jump to addr 00
|
|
# program_with_jump = program_bytes + bytearray(254 - len(program_bytes)) + bytearray.fromhex('0640') # jump to addr 0x40 (dec 64)
|
|
|
|
with open('test-multiply2.bin', 'rb') as file:
|
|
program_bytes = bytearray(file.read())
|
|
|
|
cpu.load_memory(program_bytes)
|
|
|
|
monitor.run() |