Merge branch 'rearchitect'

This commit is contained in:
n loewen 2023-09-23 21:23:16 -07:00
commit f3f6a58a65
18 changed files with 869 additions and 703 deletions

1
.gitignore vendored
View File

@ -1,4 +1,5 @@
.DS_Store
.vscode
*.tmp.*
node_modules
cardiograph.code-workspace

2
.gitmodules vendored
View File

@ -1,3 +1,3 @@
[submodule "src/argparser"]
path = src/argparser
path = src/opter
url = https://git.nloewen.com/n/argv-parser.git

106
readme.md
View File

@ -8,52 +8,77 @@ Cardiograph is an imaginary computer. It has three main components:
## Simulator
### Dependencies
Cardiograph is an imaginary computer. It has three main components:
1. the CPU, *Card* (short for 'Completely Analogue Risc Machine')
2. an input-output processor, *IO*
3. a display, *Graph*
## Simulator
### Dependencies
- Node.js
- readline-sync
### Use
#### Assemble
### Quick examples
Hex output:
```./run-assembler run source_code.asm```
Assemble and run:
```./assembler.js -i <source.asm> | ./cardiograph.js```
Binary output:
```./run-assembler runbin source_code.asm```
Assemble to a file:
```./assembler.js -i <source.asm> -o <machinecode.out>```
Verbose debugging output (hex):
```./run-assembler debug source_code.asm```
Run from a file:
```./cardiograph.js -i <machinecode.out>```
#### Assemble and run
With animated display of screen memory:
```./run-cpu run source_code.asm```
### Assembler: assembler.js
With verbose debugging output:
```./run-cpu debug source_code.asm```
```
Usage: ./assembler.js [-a] -i <input-file> [-o <output-file>]
With single stepping + pretty-printed display:
```./run-cpu step source_code.asm```
-a, --annotate Output code with debugging annotations
-i, --in <file> Assembly-language input
-o, --out <file> Machine-code output
```
With single stepping + verbose debugging output:
```./run-cpu stepdebug source_code.asm```
- If an output file is not provided, the output is printed to stdout
- If the `annotate` flag is not set, the machine code is returned as a string of space-separated decimal numbers
### Simulator: cardiograph.js
```
Usage: ./cardiograph.js [-i <file>]
-i, --in <file> Machine-code input
```
- If an input file is not provided, the input is read from stdin
## CPU
### Registers and Flags
- `A` - accumulator
- `IP` - instruction pointer (aka program counter)
- `FLAGS` - flags: **O**verflow, **N**egative, **Z**ero, **C**arry
- in machine language, each flag is given a number:
- O = 3
N = 2
Z = 1
C = 0
- (bitwise, `0000 = ONZC`)
There are three registers:
1. **A**, an 8-bit accumulator
2. **IP**, an 8-bit instruction pointer (aka program counter)
3. **flags**, a 4-bit flag register
The four flags are **O**verflow, **N**egative, **Z**ero, and **C**arry.
(Overflow is the high bit and carry is the low bit.)
In decimal:
| O | N | Z | C |
|---|---|---|---|
| 3 | 2 | 1 | 0 |
### Instruction set
@ -82,7 +107,7 @@ Hex Mnem. Operand Effect
```
- Instructions are two bytes long:
one byte for the opcode, one for the operand
one byte for the opcode, one for the operand
#### Effects on memory, flags, registers
@ -118,6 +143,9 @@ When starting up, the CPU executes a `JMP $FF`.
Put differently: it starts executing instructions at the address contained in `$FF`.
<mark>TODO: currently the simulator doesn't actually do this</mark>
### Assembly language
ADD $01 ; comments follow a `;`
@ -144,18 +172,24 @@ Put differently: it starts executing instructions at the address contained in `$
LDA * ; `*` is a special label referencing the memory address
; where the current line will be stored after assembly
- Hexadecimal numbers are preceded by a `$`
- Prefix hexadecimal numbers with `$` (or `0x`)
- Prefix binary numbers with `0b`
- Whitespace is ignored
## Cardiograph memory map
- `00-19` - display (5x5)
- `1A ` - pointer to display memory
- `1B ` - keypad: value of latest key pressed
- `1C ` - reserved for future use (bank switching flag)
- `1D ` - initial IP
- `1D-FE` - free
- `FF ` - ROM (unwriteable) pointer to initial IP (not yet implemented)
| Address | Used for... |
|----------|-----------------------------------------------|
| 00 to 19 | display (5x5) |
| 1A | pointer to display memory |
| 1B | keypad: value of latest key pressed |
| 1C | reserved for future use (bank switching flag) |
| 1D | initial IP |
| 1D to FE | free |
| FF | * ROM (unwriteable) pointer to initial IP |
\* Not implemented yet
## Cardiograph peripherals

@ -1 +0,0 @@
Subproject commit 584d9dd95f4b1b3c69065826cf96b3cda0cf9e16

191
src/assembler.js Normal file → Executable file
View File

@ -1,31 +1,21 @@
const { logMemory, num2hex } = require('./logging.js');
const {
INITIAL_IP_ADDRESS,
DISPLAY_ADDR,
POINTER_TO_DISPLAY,
} = require('./machine.config.js');
#!/usr/bin/env node
// 1 = verbose
// 2 = what i'm currently focusing on
// 3 = always print
// 4 = silent
const DEBUG_LEVEL = 2;
let DEBUG; // Turn debugging on/off -- set by assemble()
const fs = require('fs');
/**
* @param {string} assemblyCode
* @param {Boolean} [debug = false]
**/
exports.assemble = (assemblyCode, debug = false) => {
DEBUG = debug;
return decodeInstructions(assemblyCode);
}
const Opter = require('./opter/opter.js');
const { logMemory } = require('./logging.js');
const { num2hex, hex2num, bin2num } = require('./conversions.js');
const DBG = require('./dbg.js');
// Configure pseudo-ops:
const CFG = require('./machine.config.js');
/** Configure pseudo-ops **/
const ASM_IP_LABEL = '*';
const ASM_CONSTANT_PREFIX = '#';
const ASM_LABEL_PREFIX = '@';
/** Configure mnemonics **/
const mnemonicsWithOptionalArgs = ['end', 'nop'];
const mnemonics2opcodes = {
end: { direct: 0, indirect: 0 },
@ -40,7 +30,6 @@ const mnemonics2opcodes = {
nop: { direct: 15, indirect: 15 },
};
/**
* @typedef {('code'|'comment'|'blank')} SourceLineType
**/
@ -77,15 +66,15 @@ function preparseSourceCode(source) {
}
return lines.map((line, index) => {
dbg(1, ` in: ${line}`);
dbg.nit(` in: ${line}`);
let info = {
number: index + 1,
source: line,
sanitized: stripWhitespaceFromEnds(stripComments(line)),
type: getLineType(line),
};
dbg(1, `${info.number} - ${info.type}: ${info.sanitized}`);
dbg(1, ``);
dbg.nit(`${info.number} - ${info.type}: ${info.sanitized}`);
dbg.nit(``);
if (info.type === 'code') {
const op_arg_array = info.sanitized.split(/\s+/); // split line into an array of [op, arg, extra_arg]
@ -125,13 +114,15 @@ function preparseSourceCode(source) {
**/
function decodeNumericOp(arg) {
if (arg.startsWith("$")) return hex2num(arg.replace("$", ""));
if (arg.startsWith("0x")) return hex2num(arg.replace("0x", ""));
if (arg.startsWith("0b")) return bin2num(arg.replace("0b", ""));
return parseInt(arg);
}
/**
* @param {string} op
* @param {object} labels // TODO document better
* @param {object} labels // TODO - document labels object
* @param {number} IP
* @returns {Array<string>} - array of labels
**/
@ -146,11 +137,11 @@ function handleLabelDefinition(op, IP, labels) {
bytesToReplace: [],
};
}
dbg(1, ` Label definition:`);
dbg(1, ` Points to byte: ${labels[label].pointsToByte}`);
dbg(1, ` Bytes to replace: ${labels[label].bytesToReplace}`);
dbg(1, ` IP: $${num2hex(IP)}, new code: none`);
dbgGroupEnd(1, 'Input line');
dbg.nit(` Label definition:`);
dbg.nit(` Points to byte: ${labels[label].pointsToByte}`);
dbg.nit(` Bytes to replace: ${labels[label].bytesToReplace}`);
dbg.nit(` IP: $${num2hex(IP)}, new code: none`);
dbg.nitGroupEnd('Input line');
return labels;
}
@ -167,10 +158,10 @@ function handleConstantDefinitions(op, arg, IP, constants) {
constantValue = IP.toString();
}
constants[constantName] = constantValue;
dbg(1, '');
dbg(1, `Constants:`);
dbg(1, constants);
dbg(1, '');
dbg.nit('');
dbg.nit(`Constants:`);
dbg.nit(constants);
dbg.nit('');
return constants;
}
@ -182,15 +173,16 @@ function handleConstantDefinitions(op, arg, IP, constants) {
* it will be assembled to the default intial value of the IP,
* as specified in `machine.config.js`.
* @param {string} source - Assembly source to decode
* @return {{ debugInfo: Object, machineCode: Uint8Array }};
* @return {{ sourceAnnotations: Object, machineCode: Array }};
**/
// TODO rename?
function decodeInstructions(source) {
dbg(1, 'Pre-parsing...');
dbg.nit('Pre-parsing...');
let lines = preparseSourceCode(source);
dbg(1, '');
dbg(1, 'Done pre-parsing.');
dbg(1, '');
dbg(1, 'Assembling...');
dbg.nit('');
dbg.nit('Done pre-parsing.');
dbg.nit('');
dbg.nit('Assembling...');
// Figure out where to start assembly...
@ -203,7 +195,7 @@ function decodeInstructions(source) {
if (lines[idOfFirstLineWithCode].operation.startsWith(ASM_IP_LABEL)) {
IP = parseInt(lines[idOfFirstLineWithCode].argument);
} else {
IP = INITIAL_IP_ADDRESS;
IP = CFG.initialIP;
}
// Initialize arrays to collect assembled code
@ -211,18 +203,18 @@ function decodeInstructions(source) {
/** @type {Array<number>} - Assembled source code, as an array of bytes **/
let machineCode = new Array(IP).fill(0);
let debugInfo = {};
let sourceAnnotations = {};
// Initialize memory-mapped IO -- TODO this should probably be in the CPU, not here
machineCode[POINTER_TO_DISPLAY] = DISPLAY_ADDR;
machineCode[CFG.pointerToDisplay] = CFG.displayAddr;
// Initialize arrays that collect code references that
// have to be revisited after our first pass through the source
let labels = {};
let constants = {};
// Decode line by line...
for (let i = 0; i < lines.length; i++) {
let line = lines[i];
// dbg(2, `line info:`);
@ -248,7 +240,6 @@ function decodeInstructions(source) {
}
}
// *** Decode special operations ***
// Opcodes - Handle label definitions
@ -287,23 +278,23 @@ function decodeInstructions(source) {
if (line.argument.startsWith(ASM_LABEL_PREFIX)) {
let label = line.argument.substring(1); // strip label prefix
if (label in labels) {
dbg(1, `'${label}' already in labels object`);
dbg.nit(`'${label}' already in labels object`);
labels[label].bytesToReplace.push(IP + 1);
} else {
dbg(1, `'${label}' NOT in labels object`);
dbg.nit(`'${label}' NOT in labels object`);
labels[label] = {
bytesToReplace: [IP + 1],
};
}
dbg(1, `Label reference:`);
dbg(1, ` Points to byte: ${labels[label].pointsToByte}`);
dbg(1, ` Bytes to replace: ${labels[label].bytesToReplace}`);
dbg.nit(`Label reference:`);
dbg.nit(` Points to byte: ${labels[label].pointsToByte}`);
dbg.nit(` Bytes to replace: ${labels[label].bytesToReplace}`);
decodedArg = 0; // Return 0 for operand for now -- we'll replace it later
}
// Operands - Handle references to the Instruction Pointer
if (line.argument === ASM_IP_LABEL) {
dbg(1, ` References current IP - ${IP}`);
dbg.nit(` References current IP - ${IP}`);
if (typeof line.extraArgument === 'undefined') {
decodedArg = IP;
} else {
@ -313,7 +304,7 @@ function decodeInstructions(source) {
// Operands - Handle references to constants
if (line.argument.startsWith(ASM_CONSTANT_PREFIX)) {
dbg(1, `References '${line.argument}'`);
dbg.nit(`References '${line.argument}'`);
if (typeof constants[line.argument.substring(1)] === 'undefined') {
console.error();
console.error(`Error: Undefined constant '${line.argument}'`);
@ -326,7 +317,7 @@ function decodeInstructions(source) {
// Operands - Handle references to constants in indirect mode
if (line.argument.startsWith(`(${ASM_CONSTANT_PREFIX}`)) {
addressingMode = "indirect";
dbg(1, `(Indirectly) References '${line.argument}'`);
dbg.nit(`(Indirectly) References '${line.argument}'`);
let constName = line.argument.replace(`(${ASM_CONSTANT_PREFIX}`, "");
constName = constName.replace(")", "");
decodedArg = decodeNumericOp(constants[constName]);
@ -352,46 +343,45 @@ function decodeInstructions(source) {
machineCode[IP] = decodedOp;
machineCode[IP + 1] = decodedArg;
debugInfo[IP] = {
sourceAnnotations[IP] = {
lineNumber: line.number,
source: line.source,
address: IP,
machine: [decodedOp, decodedArg]
};
dbg(3, ``);
dbg(3, `Line ${line.number}: ${line.source}`);
dbg.i();
dbg.i(`Line ${line.number}: ${line.source}`);
if (line.argument) {
dbg(3, ` Asm operation: ${line.operation.toUpperCase()} ${line.argument}`);
dbg.i(` Asm operation: ${line.operation.toUpperCase()} ${line.argument}`);
} else if (line.operation) {
dbg(3, ` Asm operation: ${line.operation.toUpperCase()}`);
dbg.i(` Asm operation: ${line.operation.toUpperCase()}`);
}
dbg(3, ` Machine code: $${num2hex(decodedOp)} $${num2hex(decodedArg)}`);
dbg(3, ` IP: $${num2hex(IP)}`);
dbg.i(` Machine code: $${num2hex(decodedOp)} $${num2hex(decodedArg)}`);
dbg.i(` IP: $${num2hex(IP)}`);
IP += 2;
};
}
dbg(1, '');
dbgGroup(1, 'Memory before filling in label constants');
dbgExec(1, () => logMemory(new Uint8Array(machineCode)));
dbgGroupEnd(1);
dbg.nit('');
dbg.nitGroup('Memory before filling in label constants');
dbg.nitExec(() => logMemory(new Uint8Array(machineCode)));
dbg.nitGroupEnd();
// Backfill label references
for (let k of Object.keys(labels)) {
dbgGroup(1, `${ASM_LABEL_PREFIX}${k}`);
dbg.nitGroup(`${ASM_LABEL_PREFIX}${k}`);
let label = labels[k];
dbg(1, `Points to byte: ${label.pointsToByte}`);
dbg(1, `Bytes to replace: ${label.bytesToReplace}`);
dbgGroupEnd(1);
dbg.nit(`Points to byte: ${label.pointsToByte}`);
dbg.nit(`Bytes to replace: ${label.bytesToReplace}`);
dbg.nitGroupEnd();
for (let j = 0; j < label.bytesToReplace.length; j++) {
machineCode[label.bytesToReplace[j]] = label.pointsToByte;
}
}
return { 'debugInfo': debugInfo, 'machineCode': new Uint8Array(machineCode) };
return { 'machineCode': machineCode, 'sourceAnnotations': sourceAnnotations };
}
@ -413,10 +403,57 @@ function stripWhitespaceFromEnds(line) {
return line;
}
function hex2num(hex) { return parseInt(hex, 16) };
/**
* Assemble source code into machine code.
* If 'includeMetadata' is true, a JSON object containing
* both machine code and metadata is written to the output file.
* Otherwise, a string of decimal numbers is written.
* @arg {string} inputFilename File containing code to assemble
* @arg {boolean} outputToFile If false, output is on stdout
* @arg {boolean} includeMetadata Include metadata when writing output to a file? (for use when debugging using the simulator)
* @arg {string} [outputFilename] Output file for machine code (and optional metadata)
**/
function assemble(inputFilename, outputToFile, includeMetadata, outputFilename=null) {
const sourceCode = fs.readFileSync(inputFilename, 'utf8');
const out = decodeInstructions(sourceCode);
// Debug helpers
const dbg = (lvl, s) => { if (DEBUG && (lvl >= DEBUG_LEVEL)) console.log(s) };
const dbgGroup = (lvl, s) => { if (DEBUG && (lvl >= DEBUG_LEVEL)) console.group(s) };
const dbgGroupEnd = (lvl, s) => { if (DEBUG && (lvl >= DEBUG_LEVEL)) console.groupEnd() };
const dbgExec = (lvl, func) => { if (DEBUG && (lvl >= DEBUG_LEVEL)) func(); }
if (includeMetadata) {
const debugJSON = JSON.stringify(out);
if (outputToFile) {
fs.writeFileSync(outputFilename, debugJSON);
} else {
console.log(debugJSON);
}
} else {
const asciiMachineCode = out.machineCode.toString().replace(/,/g, ' ');
if (outputToFile) {
fs.writeFileSync(outputFilename, asciiMachineCode);
} else {
console.log(asciiMachineCode);
}
}
}
/** MAIN **/
// Initialize debugger...
const dbg = new DBG('nitpick');
// Handle command-line options...
const opter = new Opter();
opter.addOption('-a', '--annotate');
opter.addOption('-i', '--in', true, true, 1);
opter.addOption('-o', '--out', false, true, 1);
let opts = opter.parse(process.argv);
const inputFilename = opts.in[0];
let outputWithAnnotations = 'annotate' in opts;
// Assemble...!
if ('out' in opts) {
const outputFilename = opts.out[0];
assemble(inputFilename, true, outputWithAnnotations, outputFilename);
} else {
dbg.setLevel('none');
assemble(inputFilename, false, outputWithAnnotations);
}

99
src/cardiograph.js Executable file
View File

@ -0,0 +1,99 @@
#!/usr/bin/env node
const fs = require('fs');
const DBG = require('./dbg.js');
const Opter = require('./opter/opter.js');
const { num2hex, bool2bit } = require('./conversions.js');
const CFG = require('./machine.config.js');
const CPU = require('./cpu.js');
const io = require('./io.js');
/** SETUP **/
const dbg = new DBG('nitpick');
let cpu = new CPU(CFG.initialIP, CFG.defaultCycleLimit);
main();
async function main() {
const opter = new Opter();
opter.addOption('-i', '--in', false, true, 1);
const opts = opter.parse(process.argv);
let input = null;
if ('in' in opts) { // Read from file
input = fs.readFileSync(opts.in[0], 'utf8');
} else { // Read from stdin
input = await readPipedStdin();
}
let code = null;
let sourceAnnotations = null;
try {
const parsedInput = JSON.parse(input);
sourceAnnotations = parsedInput.sourceAnnotations;
code = new Uint8Array(parsedInput.machineCode);
} catch (error) {
if (error.name === 'SyntaxError') {
code = new Uint8Array(input.split(' '));
}
}
cpu.loadMemory(code);
if (sourceAnnotations !== null) { cpu.loadSourceAnnotations(sourceAnnotations); }
cpu.onCycleEnd(tick);
cpu.onCycleEnd(logCPUState);
cpu.start();
io.getKeypadInput(cpu);
cpu.step();
}
async function tick() {
const sleep = ms => new Promise(resolve => setTimeout(resolve, ms))
await sleep(100);
cpu.step();
if (!cpu.running) {
console.log('Halted');
process.exit();
}
}
function logCPUState() {
let lineInfo = null;
if (cpu.dbg.sourceAnnotations) {
lineInfo = cpu.dbg.sourceAnnotations[cpu.dbg.previousIP];
}
console.group(`Step ${cpu.dbg.cycleCounter}`);
console.log();
io.showDisplay(cpu.memory, true); // FIXME - display - allow printing hex as well as pretty-printing
console.log();
if (lineInfo) {
console.log(`Line ${lineInfo.lineNumber}: ${lineInfo.source}`);
console.log();
}
console.log('Mnemonic:', cpu.dbg.currentMnemonic);
console.log(`Machine: $${num2hex(cpu.instruction.opcode)} $${num2hex(cpu.instruction.operand)}`);
console.log();
console.log(`IP: $${num2hex(cpu.IP)} Acc: $${num2hex(cpu.acc)} ONZC ${bool2bit(cpu.flags.O)}${bool2bit(cpu.flags.N)}${bool2bit(cpu.flags.Z)}${bool2bit(cpu.flags.C)}`);
console.log(`KEY: ${io.readKeyMem(cpu.memory)} ${cpu.running ? "running" : "halted" }`);
console.log();
console.groupEnd();
};
async function readPipedStdin() {
// https://wellingguzman.com/notes/node-pipe-input
return new Promise(function (resolve, reject) {
const stdin = process.stdin;
stdin.setEncoding('utf8');
let data = '';
stdin.on('data', function (chunk) { data += chunk; });
stdin.on('end', function () { resolve(data); });
stdin.on('error', reject);
});
}

48
src/conversions.js Normal file
View File

@ -0,0 +1,48 @@
/**
* @param {number} num
* @returns {string}
*/
const num2hex = (num) => num.toString(16).toUpperCase().padStart(2, "0");
/**
* @param {string} hex
* @returns {number}
*/
const hex2num = (hex) => parseInt(hex, 16);
/**
* Convert a number to binary, padded to 8 bits
* See here for an explanation: https://stackoverflow.com/questions/9939760/how-do-i-convert-an-integer-to-binary-in-javascript
* @param {number} num
* @returns {string} binary representation of the input
**/
const num2bin = (num) => (num >>> 0).toString(2).padStart(8, "0");
/**
* Convert a number to binary, padded to 4 bits
* See here for an explanation: https://stackoverflow.com/questions/9939760/how-do-i-convert-an-integer-to-binary-in-javascript
* @param {number} num
* @returns {string} binary representation of the input
**/
const num2bin_4bit = (num) => (num >>> 0).toString(2).padStart(4, "0");
/**
* @param {string} bin
* @returns {number}
*/
const bin2num = (bin) => parseInt(bin, 2)
/**
* @param {Boolean} bool
* @returns {0|1}
**/
const bool2bit = (bool) => bool ? 1 : 0;
module.exports = {
"num2hex": num2hex,
"hex2num": hex2num,
"num2bin": num2bin,
"num2bin_4bit": num2bin_4bit,
"bin2num": bin2num,
"bool2bit": bool2bit,
}

View File

@ -1,422 +1,320 @@
const readline = require('readline');
const readlineSync = require('readline-sync');
const { num2hex } = require('./conversions.js');
const {
INITIAL_IP_ADDRESS,
DEFAULT_CYCLE_LIMIT,
KEYPAD_ADDR,
KEY_MAP,
} = require('./machine.config');
module.exports = class CPU {
const {
num2hex,
bool2bit,
} = require('./logging.js');
const display = require('./display.js');
/**
* @arg {number} initialIP
**/
constructor(initialIP, cycleLimit) {
this.running = false;
this.IP = initialIP;
this.acc = 0;
this.flags = {'C': false, 'Z': false, 'N': false, 'O': false};
this.flagNums = {0: 'C', 1: 'Z', 2: 'N', 3: 'O'};
this.instruction = { opcode: null, operand: null };
this.memory = null;
// STATE
const CPU = {
// Core state
running: false,
IP: INITIAL_IP_ADDRESS,
FLAGS: {'C': false, 'Z': false, 'N': false, 'O': false},
FLAGNUMS2NAMES: {0: 'C', 1: 'Z', 2: 'N', 3: 'O'},
Acc: 0,
memory: null,
this._cycleLimit = cycleLimit;
// Functions that update core state
/** @param {Uint8Array} data */
loadMemory: (data) => {
CPU.memory = new Uint8Array(256);
CPU.memory.set(data, 0);
},
incrementIP: (offset) => {
CPU.previousIP = CPU.IP;
CPU.IP = CPU.IP + offset;
},
setIP: (address) => {
CPU.previousIP = CPU.IP;
CPU.IP = address;
},
updateFlagZero: () => { CPU.FLAGS.Z = CPU.Acc === 0; },
updateFlagNegative: () => { CPU.Acc & 128 ? CPU.FLAGS.N = true : CPU.FLAGS.N = false },
// Debug info
previousIP: 0,
currentInstruction: {
opcode: null,
operand: null,
mnemonic: null,
},
cycleCounter: 0,
}
// FUNCTIONS THAT MODIFY STATE
const Instructions = {
end: () => {
CPU.currentInstruction.mnemonic = 'END';
CPU.running = false;
CPU.incrementIP(2);
},
store_lit: (lit) => {
CPU.currentInstruction.mnemonic = 'STO lit';
CPU.memory[lit] = CPU.Acc;
CPU.incrementIP(2);
},
store_addr: (addr) => {
CPU.currentInstruction.mnemonic = `STO addr; @addr: ${num2hex(CPU.memory[addr])}`;
CPU.memory[CPU.memory[addr]] = CPU.Acc;
CPU.incrementIP(2);
},
load_lit: (lit) => {
CPU.currentInstruction.mnemonic = 'LDA lit';
CPU.Acc = lit;
CPU.updateFlagNegative();
CPU.updateFlagZero();
CPU.incrementIP(2);
},
load_addr: (addr) => {
CPU.currentInstruction.mnemonic = `LDA addr; @ addr: ${num2hex(CPU.memory[addr])}`;
CPU.Acc = CPU.memory[addr];
CPU.updateFlagNegative();
CPU.updateFlagZero();
CPU.incrementIP(2);
},
add_lit: (lit) => {
CPU.currentInstruction.mnemonic = 'ADD lit';
// Calculate sum
let sum = CPU.Acc + lit;
if (sum > 255) {
CPU.FLAGS.C = true;
sum = (sum % 255) - 1;
} else {
CPU.FLAGS.C = false;
this.dbg = {
sourceInfo: null,
currentMnemonic: null,
previousIP: initialIP,
cycleCounter: 0,
}
// Calculate overflow flag status
let bitSixCarry = 0;
if ((CPU.Acc & 64) && (lit & 64)) { bitSixCarry = 1; }
// let overflow = bitSixCarry ^ (CPU.FLAGS & 8);
// FIXME FIXME FIXME
// I'm on a plane and can't remember how this works
let overflow = 0;
if (overflow) {
CPU.FLAGS.O = true;
} else {
CPU.FLAGS.O = false;
}
CPU.Acc = sum;
CPU.updateFlagNegative();
CPU.updateFlagZero();
CPU.incrementIP(2);
},
add_addr: (addr) => {
CPU.currentInstruction.mnemonic = 'ADD addr';
// Calculate sum
let sum = CPU.Acc + CPU.memory[addr];
if (sum > 255) {
CPU.FLAGS.C = true;
sum = (sum % 255) - 1;
} else {
CPU.FLAGS.C = false;
}
// Calculate overflow flag status
let bitSixCarry = 0;
if ((CPU.Acc & 64) && (addr & 64)) { bitSixCarry = 1; }
// let overflow = bitSixCarry ^ (CPU.FLAGS & 8);
// FIXME FIXME FIXME
// I'm on a plane and can't remember how this works
let overflow = 0;
if (overflow) {
CPU.FLAGS.O = true;
} else {
CPU.FLAGS.O = false;
}
CPU.Acc = sum;
CPU.updateFlagNegative();
CPU.updateFlagZero();
CPU.incrementIP(2);
},
sub_lit: (lit) => {
CPU.currentInstruction.mnemonic = 'SUB lit';
// Calculate sum
let sum = CPU.Acc - lit;
if (sum < 0) {
CPU.FLAGS.C = true;
sum = sum + 256;
} else {
CPU.FLAGS.C = false;
}
// Calculate overflow flag status
let bitSixCarry = 0;
if ((CPU.Acc & 64) && (lit & 64)) { bitSixCarry = 1; }
// let overflow = bitSixCarry ^ (CPU.FLAGS & 8);
// FIXME FIXME FIXME
// I'm on a plane and can't remember how this works
let overflow = 0;
if (overflow) {
CPU.FLAGS.O = true;
} else {
CPU.FLAGS.O = false;
}
CPU.Acc = sum;
CPU.updateFlagNegative();
CPU.updateFlagZero();
CPU.incrementIP(2);
},
sub_addr: (addr) => {
CPU.currentInstruction.mnemonic = 'SUB addr';
// Calculate sum
let sum = CPU.Acc - CPU.memory[addr];
if (sum < 0) {
CPU.FLAGS.C = true;
sum = sum + 256;
} else {
CPU.FLAGS.C = false;
}
// Calculate overflow flag status
let bitSixCarry = 0;
if ((CPU.Acc & 64) && (addr & 64)) { bitSixCarry = 1; }
// let overflow = bitSixCarry ^ (CPU.FLAGS & 8);
// FIXME FIXME FIXME
// I'm on a plane and can't remember how this works
let overflow = 0;
if (overflow) {
CPU.FLAGS.O = true;
} else {
CPU.FLAGS.O = false;
}
CPU.Acc = sum;
CPU.updateFlagNegative();
CPU.updateFlagZero();
CPU.incrementIP(2);
},
hop_lit: (lit) => {
CPU.currentInstruction.mnemonic = `HOP lit; IP+2: ${CPU.memory[CPU.IP+2]}, IP+3: ${CPU.memory[CPU.IP+3]}`;
if (CPU.Acc === lit) {
CPU.incrementIP(4);
} else {
CPU.incrementIP(2);
}
},
hop_addr: (addr) => {
CPU.currentInstruction.mnemonic = 'HOP addr';
if (CPU.Acc === CPU.memory[addr]) {
CPU.incrementIP(4);
} else {
CPU.incrementIP(2);
}
},
jump_lit: (lit) => {
CPU.currentInstruction.mnemonic = 'JMP lit';
CPU.setIP(lit);
},
jump_addr: (addr) => {
CPU.currentInstruction.mnemonic = 'JMP addr';
CPU.setIP(CPU.memory[addr]);
},
flag_toggle: (flagNum) => {
if (flagNum === null) {
console.error('Invalid flag number');
process.exit();
}
const flagName = CPU.FLAGNUMS2NAMES[flagNum];
CPU.currentInstruction.mnemonic = `FTG ${flagName}`;
CPU.FLAGS[flagName] = !CPU.FLAGS[flagName];
CPU.incrementIP(2);
},
flag_hop: (flagNum) => {
if (flagNum === null) {
console.error('Invalid flag number');
process.exit();
}
const flagName = CPU.FLAGNUMS2NAMES[flagNum];
CPU.currentInstruction.mnemonic = `FHP ${flagName}; IP+2: ${CPU.memory[CPU.IP+2]}, IP+3: ${CPU.memory[CPU.IP+3]}`;
if (CPU.FLAGS[CPU.FLAGNUMS2NAMES[flagNum]]) {
CPU.incrementIP(4);
} else {
CPU.incrementIP(2);
}
},
no_op: () => {
CPU.currentInstruction.mnemonic = `NOP`;
CPU.incrementIP(2);
},
}
const opcodes2mnemonics = {
0: (operand) => Instructions.end(),
1: (operand) => Instructions.store_lit(operand),
2: (operand) => Instructions.store_addr(operand),
3: (operand) => Instructions.load_lit(operand),
4: (operand) => Instructions.load_addr(operand),
5: (operand) => Instructions.add_lit(operand),
6: (operand) => Instructions.add_addr(operand),
7: (operand) => Instructions.sub_lit(operand),
8: (operand) => Instructions.sub_addr(operand),
9: (operand) => Instructions.hop_lit(operand),
10: (operand) => Instructions.hop_addr(operand),
11: (operand) => Instructions.jump_lit(operand),
12: (operand) => Instructions.jump_addr(operand),
13: (operand) => Instructions.flag_toggle(operand),
14: (operand) => Instructions.flag_hop(operand),
15: (operand) => Instructions.no_op(),
};
/**
* Load code into memory and set CPU state to "running"
* @param {Uint8Array} code - Machine code to load
**/
function startCPU(code) {
CPU.loadMemory(code);
CPU.cycleCounter = 0;
CPU.running = true;
// FIXME: This conflicts with single-stepping
// (you can single-step, but keys aren't passed
// through to the Cardiograph)
//
// -> The fix is maybe to remove readlineSync,
// and instead stash the keypress into a buffer variable.*
// Then have the stepping function check that buffer,
// and then clear the buffer, each time it runs.
//
// * If it's in the set of keys that are relevant
// to single-stepping.
// Start listening for keypresses...
readline.emitKeypressEvents(process.stdin);
if (process.stdin.setRawMode != null) {
process.stdin.setRawMode(true);
}
process.stdin.on('keypress', (str, key) => { // TODO: is it possible to turn this off again?
if (key.sequence === '\x03') process.exit();
let name = key.name.toUpperCase();
if (name in KEY_MAP) {
CPU.memory[KEYPAD_ADDR] = KEY_MAP[name];
}
});
}
/**
* Execute just the next instruction in memory
* @param {Object} debugInfo
* @param {Boolean} [debug] - Print machine status and the line of code being executed
**/
async function stepCPU(debugInfo, debug = false, prettyPrintDisplay = false) {
if (CPU.IP >= CPU.memory.length) {
console.error('HALTING - IP greater than memory size');
CPU.running = false;
/** Public interface **/
/**
* @param {Uint8Array} machineCode
**/
loadMemory(machineCode) {
this.memory = new Uint8Array(256);
this.memory.set(machineCode, 0);
}
peek() { return; } // TODO - implement Peek
poke() { return; } // TODO - implement Poke
/** @param {Array} info **/ // TODO - document type for 'sourceInfo'
loadSourceAnnotations(info) {
this.dbg.sourceInfo = info;
}
/** Set CPU state to "state.running" **/
start() {
this.running = true;
}
/** Execute the next instruction in memory **/
step() {
this._cycleStartCallbacks.forEach((fn) => fn());
if (this.IP >= this.memory.length) {
this.running = false;
throw new Error('HALTING - IP greater than memory size');
} else {
this.instruction.opcode = this.memory[this.IP];
this.instruction.operand = this.memory[this.IP+1];
let mnem = this._nums2mnems[this.instruction.opcode];
let op = this._ops[mnem];
if (typeof op === 'undefined') { this._failInvalidOpcode(); }
op(this.instruction.operand);
this.dbg.cycleCounter += 1;
}
// Temporary limit as a lazy way to halt infinite loops
if ((this._cycleLimit > 0) && this.dbg.cycleCounter >= this._cycleLimit) {
this.running = false;
throw new Error(' HALTING - reached cycle limit');
}
this._cycleEndCallbacks.forEach((fn) => fn());
if (!this.running) process.exit();
}
/** Private methods **/
_incrementIP(offset) {
this.dbg.previousIP = this.IP;
this.IP = this.IP + offset;
}
_setIP(address) {
this.dbg.previousIP = this.IP;
this.IP = address;
}
_updateFlagZero() {
this.flags.Z = this.acc === 0;
}
_updateFlagNegative() {
if (this.acc & 128)
{ this.flags.N = true; }
else
{ this.flags.N = false; }
}
/** Hooks **/
/** @type Array<Function> **/
_cycleStartCallbacks = [];
/** @type Array<Function> **/
_cycleEndCallbacks = [];
/** @param {function} fn **/
onCycleStart(fn) { this._cycleStartCallbacks.push(fn) };
/** @param {function} fn **/
onCycleEnd(fn) { this._cycleEndCallbacks.push(fn) };
_ops = {
end: () => {
this.dbg.currentMnemonic = 'END';
this.running = false;
this._incrementIP(2);
},
store_lit: (lit) => {
this.dbg.currentMnemonic = 'STO lit';
this.memory[lit] = this.acc;
this._incrementIP(2);
},
store_addr: (addr) => {
this.dbg.currentMnemonic = `STO addr; @addr: $${num2hex(this.memory[addr])}`;
this.memory[this.memory[addr]] = this.acc;
this._incrementIP(2);
},
load_lit: (lit) => {
this.dbg.currentMnemonic = 'LDA lit';
this.acc = lit;
this._updateFlagNegative();
this._updateFlagZero();
this._incrementIP(2);
},
load_addr: (addr) => {
this.dbg.currentMnemonic = `LDA addr; @ addr: $${num2hex(this.memory[addr])}`;
this.acc = this.memory[addr];
this._updateFlagNegative();
this._updateFlagZero();
this._incrementIP(2);
},
add_lit: (lit) => {
this.dbg.currentMnemonic = 'ADD lit';
const [sum, carry, overflow] = sumCarryOverflow(this.acc, lit);
this.acc = sum;
this.flags.C = carry;
this.flags.O = overflow;
this._updateFlagNegative();
this._updateFlagZero();
this._incrementIP(2);
},
add_addr: (addr) => {
this.dbg.currentMnemonic = `ADD addr; @ addr: $${num2hex(this.memory[addr])}`;
const [sum, carry, overflow] = sumCarryOverflow(this.acc, this.memory[addr]);
this.acc = sum;
this.flags.C = carry;
this.flags.O = overflow;
this._updateFlagNegative();
this._updateFlagZero();
this._incrementIP(2);
},
sub_lit: (lit) => {
this.dbg.currentMnemonic = 'SUB lit';
const [difference, carry, overflow] = differenceCarryOverflow(this.acc, lit);
this.acc = difference;
this.flags.C = carry;
this.flags.O = overflow;
this._updateFlagNegative();
this._updateFlagZero();
this._incrementIP(2);
},
sub_addr: (addr) => {
this.dbg.currentMnemonic = `SUB addr; @ addr: $${num2hex(this.memory[addr])}`;
const [difference, carry, overflow] = differenceCarryOverflow(this.acc, this.memory[addr]);
this.acc = difference;
this.flags.C = carry;
this.flags.O = overflow;
this._updateFlagNegative();
this._updateFlagZero();
this._incrementIP(2);
},
hop_lit: (lit) => {
this.dbg.currentMnemonic = `HOP lit; IP+2: $${this.memory[this.IP+2]}, IP+3: $${this.memory[this.IP+3]}`;
if (this.acc === lit) {
this._incrementIP(4);
} else {
this._incrementIP(2);
}
},
hop_addr: (addr) => {
this.dbg.currentMnemonic = 'HOP addr';
if (this.acc === this.memory[addr]) {
this._incrementIP(4);
} else {
this._incrementIP(2);
}
},
jump_lit: (lit) => {
this.dbg.currentMnemonic = 'JMP lit';
this._setIP(lit);
},
jump_addr: (addr) => {
this.dbg.currentMnemonic = 'JMP addr';
this._setIP(this.memory[addr]);
},
flag_toggle: (flagNum) => {
if (flagNum === null) {
let info = this.dbg.sourceInfo[this.IP];
throw new Error(`Invalid flag number: '${flagNum}' on line ${info.lineNumber}: ${info.source}`);
}
const flagName = this.flagNums[flagNum];
this.dbg.currentMnemonic = `FTG ${flagName}`;
this.flags[flagName] = !this.flags[flagName];
this._incrementIP(2);
},
flag_hop: (flagNum) => {
if (flagNum === null) {
console.error('Invalid flag number');
process.exit();
}
const flagName = this.flagNums[flagNum];
this.dbg.currentMnemonic =
`FHP ${flagName}; IP+2: ${this.memory[this.IP+2]}, IP+3: ${this.memory[this.IP+3]}`;
if (this.flags[this.flagNums[flagNum]]) {
this._incrementIP(4);
} else {
this._incrementIP(2);
}
},
no_op: () => {
this.dbg.currentMnemonic = `NOP`;
this._incrementIP(2);
},
}
_nums2mnems = {
0: "end",
1: "store_lit",
2: "store_addr",
3: "load_lit",
4: "load_addr",
5: "add_lit",
6: "add_addr",
7: "sub_lit",
8: "sub_addr",
9: "hop_lit",
10: "hop_addr",
11: "jump_lit",
12: "jump_addr",
13: "flag_toggle",
14: "flag_hop",
15: "no_op",
}
_failInvalidOpcode() {
let info = this.dbg.sourceInfo[this.dbg.previousIP];
console.error();
console.error(`Error: Invalid opcode`);
console.error(` Executing $${num2hex(info.machine[0])} $${num2hex(info.machine[1])}`);
console.error(` from line ${info.lineNumber}: ${info.source}`);
process.exit();
} else {
CPU.currentInstruction.opcode = CPU.memory[CPU.IP];
CPU.currentInstruction.operand = CPU.memory[CPU.IP+1];
let executeInstruction = opcodes2mnemonics[CPU.currentInstruction.opcode];
if (typeof executeInstruction === 'undefined') {
let info = debugInfo[CPU.previousIP];
console.error();
console.error(`Error: Invalid opcode`);
console.error(` Executing $${num2hex(info.machine[0])} $${num2hex(info.machine[1])}`);
console.error(` from line ${info.lineNumber}: ${info.source}`);
process.exit();
}
executeInstruction(CPU.currentInstruction.operand);
CPU.cycleCounter += 1;
}
logCPUState(debugInfo, debug, prettyPrintDisplay);
if (DEFAULT_CYCLE_LIMIT) { // Temporary limit as a lazy way to halt infinite loops
if (CPU.cycleCounter >= DEFAULT_CYCLE_LIMIT) {
console.warn(' HALTING - reached cycle limit');
CPU.running = false;
}
}
if (!CPU.running) process.exit();
}
/**
* @param {Uint8Array} code - Machine code to run
* @param {Object} debugInfo TODO type
* @param {Boolean} [debug] - Enable/disable debugging printouts
* @param {Boolean} [singleStep]
* @param {Boolean} [prettyPrint] - Print display with black and white emoji, instead of in hex
* @param {Number} [clockSpeed] - CPU clock speed in milliseconds
**/
exports.runProgram =
(code, debugInfo, debug=false, singleStep=false, prettyPrint=false, clockSpeed=100) => {
if (singleStep) {
this.singleStepProgram(code, debugInfo, debug, prettyPrint);
} else {
startCPU(code);
// Animate the output by pausing between steps
const loop = setInterval(async () => {
stepCPU(debugInfo, debug, prettyPrint);
if (!CPU.running) {
logCPUState(debugInfo, debug, prettyPrint);
console.log('Halted');
process.exit();
}
}, clockSpeed);
}
};
/**
* @param {Uint8Array} code - Machine code to run
* @param {any} debugInfo - TODO
* @param {Boolean} [debug] - Enable/disable debugging printouts
* @param {Boolean} [prettyPrintDisplay] - Print display using black and white emoji
**/
exports.singleStepProgram = (code, debugInfo, debug = false, prettyPrintDisplay = false) => {
startCPU(code);
while (CPU.running) {
stepCPU(debugInfo, debug, prettyPrintDisplay);
// FIXME: this prevents exiting with Ctrl+C:
let key = readlineSync.keyIn('S to step, Q to quit > ', {
limit: ['s', 'S', 'q', 'Q'],
});
if (key.toLowerCase() === 'q') { process.exit(); }
console.log();
}
}
/**
* @arg {number} n1
* @arg {number} n2
* @returns {[number, boolean, boolean]} [sum, carry, overflow]
**/
function sumCarryOverflow(n1, n2) {
let sum = n1 + n2;
let carry = false;
if (sum > 255) {
carry = true;
sum = (sum % 255) - 1;
}
// FUNCTIONS THAT PULL INFO FROM STATE TO DISPLAY
let n1_bit6 = (n1 & 64) === 64; // Bit 6 is the 64s place
let n2_bit6 = (n2 & 64) === 64; // 64 & n == 64 where n >= 64
let carryIntoLastBit = n1_bit6 && n2_bit6;
console.log('c_in', carryIntoLastBit, 'c_out', carry);
let overflow = carryIntoLastBit != carry;
return [sum, carry, overflow];
}
/**
* @param {Boolean} [debug] - Enable/disable debugging printouts
* @arg {number} n1
* @arg {number} n2
* @returns {[number, boolean, boolean]} [sum, carry, overflow]
**/
function logCPUState(debugInfo, debug = false, prettyPrintDisplay = false) {
debugInfo = debugInfo[CPU.previousIP] !== 'undefined' ? debugInfo[CPU.previousIP] : false;
console.group(`Step ${CPU.cycleCounter}`);
console.log();
if (!debug) console.clear();
display.show(CPU.memory, prettyPrintDisplay);
console.log();
if (debugInfo) {
console.log(`Line ${debugInfo.lineNumber}: ${debugInfo.source}`);
console.log();
}
console.log('Mnemonic:', CPU.currentInstruction.mnemonic);
console.log(`Machine: $${num2hex(CPU.currentInstruction.opcode)} $${num2hex(CPU.currentInstruction.operand)}`);
console.log();
console.log(`IP: $${num2hex(CPU.IP)} Acc: $${num2hex(CPU.Acc)} ONZC ${bool2bit(CPU.FLAGS.O)}${bool2bit(CPU.FLAGS.N)}${bool2bit(CPU.FLAGS.Z)}${bool2bit(CPU.FLAGS.C)}`);
console.log(`KEY: $${num2hex(CPU.memory[KEYPAD_ADDR])}  ${CPU.running ? "running" : "halted" }`);
console.log();
console.log();
console.groupEnd();
};
function differenceCarryOverflow(n1, n2) {
// https://www.righto.com/2012/12/the-6502-overflow-flag-explained.html
// > SBC simply takes the ones complement of the second value and then performs an ADC.
//
// https://stackoverflow.com/a/8966863
// > The signed overflow flag value, however, must be the same for both A-B and A+(-B) because it depends on whether or not the result has the correct sign bit and in both cases the sign bit will be the same.
return sumCarryOverflow(n1, -n2);
}

113
src/dbg.js Normal file
View File

@ -0,0 +1,113 @@
module.exports = class DBG {
/**
* @param ${'none'|'warn'|'info'|'debug'|'nitpick'} [level='info']
**/
constructor(level = 'info') {
this.setLevel(level);
}
_levels = ['nitpick', 'debug', 'info', 'warn', 'none'];
setLevel(level) {
if (this._levels.includes(level)) {
this._level = level;
} else {
throw new Error(`'${level}' is not a valid debug level`);
}
}
/** @param {any} s **/
warn = (s='', ...z) => {
if (this._lvl2num('warn') < this._lvl2num(this._level)) return
console.log(s, ...z);
}
/** @param {any} s **/
i = (s='', ...z) => {
if (this._lvl2num('info') < this._lvl2num(this._level)) return
console.log(s, ...z);
}
/** @param {any} s **/
d = (s='', ...z) => {
if (this._lvl2num('debug') < this._lvl2num(this._level)) return
console.log(s, ...z);
}
/** @param {any} s **/
nit = (s='', ...z) => {
if (this._lvl2num('nitpick') < this._lvl2num(this._level)) return
console.log(s, ...z);
}
warnGroup = (s) => {
if (this._lvl2num('warn') < this._lvl2num(this._level)) return
console.group(s);
}
infoGroup = (s) => {
if (this._lvl2num('info') < this._lvl2num(this._level)) return
console.group(s);
}
debugGroup = (s) => {
if (this._lvl2num('debug') < this._lvl2num(this._level)) return
console.group(s);
}
nitGroup = (s) => {
if (this._lvl2num('nit') < this._lvl2num(this._level)) return
console.group(s);
}
warnGroupEnd = (s) => {
if (this._lvl2num('warn') < this._lvl2num(this._level)) return
console.groupEnd();
}
infoGroupEnd = (s) => {
if (this._lvl2num('info') < this._lvl2num(this._level)) return
console.group();
}
debugGroupEnd = (s) => {
if (this._lvl2num('debug') < this._lvl2num(this._level)) return
console.group();
}
nitGroupEnd = (s) => {
if (this._lvl2num('nit') < this._lvl2num(this._level)) return
console.group();
}
warnExec = (fn) => {
if (this._lvl2num('warn') < this._lvl2num(this._level)) return
fn();
}
infoExec = (fn) => {
if (this._lvl2num('info') < this._lvl2num(this._level)) return
fn();
}
debugExec = (fn) => {
if (this._lvl2num('debug') < this._lvl2num(this._level)) return
fn();
}
nitExec = (fn) => {
if (this._lvl2num('nit') < this._lvl2num(this._level)) return
fn();
}
_lvl2num(lvl) {
return 1 + this._levels.findIndex(l => l === lvl);
}
}
/* TEST
const dbg = new DBG('nitpick');
dbg.warnGroup('w');
dbg.warn('warn');
dbg.warnGroupEnd();
dbg.iGroup('i');
dbg.i('info');
dbg.iGroupEnd();
dbg.dGroup('d');
dbg.d('debug');
dbg.dGroupEnd();
dbg.nitGroup('n');
dbg.nit('nitpick');
dbg.nitGroupEnd();
*/

View File

@ -1,22 +0,0 @@
const { POINTER_TO_DISPLAY } = require('./machine.config');
const { num2hex } = require('./logging.js');
/**
* Print the contents of display memory
* by default, each pixel is shown as a hex number
* @param {Uint8Array} mem - CPU memory
* @param {Boolean} pretty - Display pixels using black and white emoji circles
**/
const printDisplay = (mem, pretty=false) => {
const disp = mem[POINTER_TO_DISPLAY];
const num2pic = (n) => n > 0 ? '⚫' : '⚪';
let fmt = (n) => num2hex(n);
if (pretty) fmt = (n) => num2pic(n);
for (let i = disp; i < disp + 25; i += 5) {
console.log(`${fmt(mem[i])} ${fmt(mem[i+1])} ${fmt(mem[i+2])} ${fmt(mem[i+3])} ${fmt(mem[i+4])}`);
}
}
module.exports = {
"show": printDisplay,
}

44
src/io.js Normal file
View File

@ -0,0 +1,44 @@
const readline = require('readline');
const CFG = require('./machine.config.js');
const { num2hex } = require('./logging.js');
function readKeyMem(mem) {
return mem[CFG.keypadAddr];
}
function getKeypadInput(cpu) {
readline.emitKeypressEvents(process.stdin);
if (process.stdin.setRawMode != null) {
process.stdin.setRawMode(true);
}
process.stdin.on('keypress', (str, key) => {
if (key.sequence === '\x03') process.exit();
let name = key.name.toUpperCase();
if (name in CFG.keyMap) {
cpu.memory[CFG.keypadAddr] = CFG.keyMap[name];
}
});
}
/**
* Print the contents of display memory
* by default, each pixel is shown as a hex number
* @param {Uint8Array} mem - CPU memory
* @param {Boolean} pretty - Display pixels using black and white emoji circles
**/
function showDisplay(mem, pretty=false) {
const disp = mem[CFG.pointerToDisplay];
const num2pic = (n) => n > 0 ? '⚫' : '⚪';
let fmt = (n) => num2hex(n);
if (pretty) fmt = (n) => num2pic(n);
for (let i = disp; i < disp + 25; i += 5) {
console.log(`${fmt(mem[i])} ${fmt(mem[i+1])} ${fmt(mem[i+2])} ${fmt(mem[i+3])} ${fmt(mem[i+4])}`);
}
}
module.exports = {
"showDisplay": showDisplay,
"getKeypadInput": getKeypadInput,
"readKeyMem": readKeyMem,
}

View File

@ -1,3 +1,5 @@
let { num2hex } = require('./conversions.js');
/**
* Display a table of memory locations.
* Call with [start] and [end] indices to display a range.
@ -15,7 +17,7 @@ const logMemory = (mem, start=0, end=mem.length) => {
for (let i = start; i < mem.length; i +=2) {
let operand = mem[i+1];
if (typeof operand === 'undefined') {
console.log(` ${num2hex(i)} ${num2hex(i+1)}${num2hex(mem[i])} │ │`);
console.log(` ${num2hex(i)} ${num2hex(i+1)} ${num2hex(mem[i])} `);
} else {
console.log(`${num2hex(i)} ${num2hex(i+1)}${num2hex(mem[i])}${num2hex(operand)}`);
}
@ -38,54 +40,7 @@ const logRunningHeader = () => {
console.log( `└─────────────────────┘`);
}
/**
* @param {number} num
* @returns {string}
*/
const num2hex = (num) => num.toString(16).toUpperCase().padStart(2, "0");
/**
* @param {string} hex
* @returns {number}
*/
const hex2num = (hex) => parseInt(hex, 16);
/**
* Convert a number to binary, padded to 8 bits
* See here for an explanation: https://stackoverflow.com/questions/9939760/how-do-i-convert-an-integer-to-binary-in-javascript
* @param {number} num
* @returns {string} binary representation of the input
**/
const num2bin = (num) => (num >>> 0).toString(2).padStart(8, "0");
/**
* Convert a number to binary, padded to 4 bits
* See here for an explanation: https://stackoverflow.com/questions/9939760/how-do-i-convert-an-integer-to-binary-in-javascript
* @param {number} num
* @returns {string} binary representation of the input
**/
const num2bin_4bit = (num) => (num >>> 0).toString(2).padStart(4, "0");
/**
* @param {string} bin
* @returns {number}
*/
const bin2num = (bin) => parseInt(bin, 2)
/**
* @param {Boolean} bool
* @returns {0|1}
**/
const bool2bit = (bool) => bool ? 1 : 0;
module.exports = {
"logMemory": logMemory,
"logRunningHeader": logRunningHeader,
"num2hex": num2hex,
"hex2num": hex2num,
"num2bin": num2bin,
"num2bin_4bit": num2bin_4bit,
"bin2num": bin2num,
"bool2bit": bool2bit,
}

View File

@ -1,13 +1,13 @@
module.exports = {
"INITIAL_IP_ADDRESS": 29,
"initialIP": 29,
// Use these in CPU:
"DISPLAY_ADDR": 0,
"KEYPAD_ADDR": 27,
"displayAddr": 0,
"keypadAddr": 27,
// Store the `DISPLAY_ADDR` at this address when assembling:
"POINTER_TO_DISPLAY": 26,
"pointerToDisplay": 26,
"KEY_MAP": {
"keyMap": {
// Same layout as COSMAC VIP / CHIP-8
// (This object maps qwerty keys to hex keys
// so that they are arranged in the same layout
@ -27,5 +27,5 @@ module.exports = {
// max number of times to step the CPU,
// to stop endless loops
// 0 = infinite
"DEFAULT_CYCLE_LIMIT": 2048,
"defaultCycleLimit": 2048,
}

1
src/opter Submodule

@ -0,0 +1 @@
Subproject commit 1d98a0707c3e61e362d2d3d5413b475437b5de0e

View File

@ -1,5 +1,5 @@
{
"name": "paper-computer",
"name": "cardiograph",
"scripts": {
"jsdoc": "./node_modules/.bin/jsdoc"
},

View File

@ -1,33 +0,0 @@
#!/usr/bin/env node
// Run with hex output: `./run-assembler.js run assembly.asm`
// Run with binary output: `./run-assembler.js runbin assembly.asm`
// Debug: `./run-assembler.js debug assembly.asm`
const fs = require('fs');
const assembler = require('./assembler.js');
const { logMemory, num2hex, num2bin } = require('./logging.js');
const machineConfig = require('./machine.config.js');
const mode = process.argv[2];
const filename = process.argv[3];
const inputFile_str = fs.readFileSync(filename, 'utf8');
let assembler_output;
if (mode === "debug") {
assembler_output = assembler.assemble(inputFile_str, true);
console.log('');
console.group("Machine code output");
logMemory(assembler_output.machineCode, machineConfig.INITIAL_IP_ADDRESS);
console.groupEnd();
} else {
assembler_output = assembler.assemble(inputFile_str);
let output = '';
if (mode === 'runbin') { // print binary output
assembler_output.machineCode.forEach((n) => output = `${output} ${num2bin(n)}`);
} else { // print hex output
assembler_output.machineCode.forEach((n) => output = `${output} ${num2hex(n)}`);
}
console.log(output);
}

View File

@ -1,71 +0,0 @@
#!/usr/bin/env node
// Usage: ./run-cpu.js -f code.asm [--debug] [--step] [--pretty]
const fs = require('fs');
const computer = require('./cpu.js');
const assembler = require('./assembler.js');
const { logRunningHeader } = require('./logging.js');
// Load file...
let filename;
try {
filename = getArgumentValue('-f', `Missing filename`);
} catch (error) {
console.error(error.message);
process.exit()
}
const inputFile_str = fs.readFileSync(filename, 'utf8');
// Check optional arguments...
let debug = false;
let singleStep = false;
let prettyPrint = false;
process.argv.forEach((arg) => { if (arg === '--debug') { debug = true } });
process.argv.forEach((arg) => { if (arg === '--step') { singleStep = true } });
process.argv.forEach((arg) => { if (arg === '--pretty') { prettyPrint = true } });
let speed = null;
process.argv.forEach((arg, index) => {
if (arg === '--speed' && process.argv.length > (index -1)) {
speed = parseInt(process.argv[index + 1]);
}
});
let assemblerOutput = assembler.assemble(inputFile_str);
logRunningHeader();
computer.runProgram(
assemblerOutput.machineCode,
assemblerOutput.debugInfo,
debug,
singleStep,
prettyPrint,
speed
);
// CLI args TODO
// - check if value is the name of another arg
// - usage info
// - catch nonexistant flags
/**
* @param {string} flag - The command line flag, eg. '-f'
* @param {string} errorMessage - The error to throw if a value isn't found
* @returns {string}
**/
function getArgumentValue(flag, errorMessage) {
let value = null;
process.argv.forEach((arg, index) => {
if (arg === flag && process.argv.length > (index -1)) {
value = process.argv[index + 1];
}
});
if (!value) throw new Error(errorMessage);
return value;
}

View File

@ -0,0 +1,63 @@
;; Test behaviour of flags during addition and subtraction
;; with a focus on the Overflow flag
;; 2023-08-29
; http://teaching.idallen.com/dat2343/11w/notes/040_overflow.txt:
;
; > 1. If the sum of two numbers with the sign bits off yields a result number
; with the sign bit on, the "overflow" flag is turned on.
; >
; > 0100 + 0100 = 1000 (overflow flag is turned on)
; >
; > 2. If the sum of two numbers with the sign bits on yields a result number
; > with the sign bit off, the "overflow" flag is turned on.
; >
; > 1000 + 1000 = 0000 (overflow flag is turned on)
; >
; > Otherwise, the overflow flag is turned off.
; > * 0100 + 0001 = 0101 (overflow flag is turned off)
; > * 0110 + 1001 = 1111 (overflow flag is turned off)
; > * 1000 + 0001 = 1001 (overflow flag is turned off)
; > * 1100 + 1100 = 1000 (overflow flag is turned off)
;; Check simple addition and subtraction
; LDA 1
; STO 0
; LDA 1
; ADD 1
; LDA 1
; ADD (0)
; LDA 3
; SUB 1
; LDA 3
; SUB (0)
;; Check zero flag, negative flag
; LDA 0
; LDA 255
;; Check overflow flag
LDA 0b01000000
ADD 0b01000000 ; 10000000 ; Overflow flag is on
LDA 0b10000000
ADD 0b10000000 ; 00000000 ; Overflow flag is on
; > * 0100 + 0001 = 0101 (overflow flag is turned off)
; > * 0110 + 1001 = 1111 (overflow flag is turned off)
; > * 1000 + 0001 = 1001 (overflow flag is turned off)
; > * 1100 + 1100 = 1000 (overflow flag is turned off)
LDA 0b01000000
ADD 0b00010000 ; 01010000 ; overflow off
LDA 0b01100000
ADD 0b10010000 ; 11110000 ; overflow off
LDA 0b10000000
ADD 0b00010000 ; 10010000 ; overflow off
LDA 0b11000000
ADD 0b11000000 ; 10000000 ; overflow off